Circulating insulin stimulates fatty acid retention in white adipose tissue via KATP channel activation in the central nervous system only in insulin-sensitive mice.

نویسندگان

  • Claudia P Coomans
  • Janine J Geerling
  • Bruno Guigas
  • Anita M van den Hoek
  • Edwin T Parlevliet
  • D Margriet Ouwens
  • Hanno Pijl
  • Peter J Voshol
  • Patrick C N Rensen
  • Louis M Havekes
  • Johannes A Romijn
چکیده

Insulin signaling in the central nervous system (CNS) is required for the inhibitory effect of insulin on glucose production. Our aim was to determine whether the CNS is also involved in the stimulatory effect of circulating insulin on the tissue-specific retention of fatty acid (FA) from plasma. In wild-type mice, hyperinsulinemic-euglycemic clamp conditions stimulated the retention of both plasma triglyceride-derived FA and plasma albumin-bound FA in the various white adipose tissues (WAT) but not in other tissues, including brown adipose tissue (BAT). Intracerebroventricular (ICV) administration of insulin induced a similar pattern of tissue-specific FA partitioning. This effect of ICV insulin administration was not associated with activation of the insulin signaling pathway in adipose tissue. ICV administration of tolbutamide, a K(ATP) channel blocker, considerably reduced (during hyperinsulinemic-euglycemic clamp conditions) and even completely blocked (during ICV administration of insulin) WAT-specific retention of FA from plasma. This central effect of insulin was absent in CD36-deficient mice, indicating that CD36 is the predominant FA transporter in insulin-stimulated FA retention by WAT. In diet-induced insulin-resistant mice, these stimulating effects of insulin (circulating or ICV administered) on FA retention in WAT were lost. In conclusion, in insulin-sensitive mice, circulating insulin stimulates tissue-specific partitioning of plasma-derived FA in WAT in part through activation of K(ATP) channels in the CNS. Apparently, circulating insulin stimulates fatty acid uptake in WAT but not in BAT, directly and indirectly through the CNS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulatory Effect of Insulin on Glucose Uptake by Muscle Involves the Central Nervous System in Insulin-Sensitive Mice

OBJECTIVE Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. RESEARCH DESIGN AND METHODS Tolbutamide, an inhibitor of ATP-sensi...

متن کامل

Central nervous system and glucose homeostasis

Type 2 diabetes (T2D) is closely associated with obesity. Obesity features an abnormality in energy balance with excess energy stored in fat tissues. In T2D, the ability to regulate glucose homeostasis is compromised resulting in hyperglycemia (high levels of blood glucose). Central nervous system (CNS) plays an important role in energy and glucose homeostasis [1]. In normal situations, the neu...

متن کامل

Central and Metabolic Effects of High Fructose Consumption: Evidence from Animal and Human Studies

Fructose consumption has increased dramatically in the last 40 years, and its role in the pathogenesis of the metabolic syndrome has been implicated by many studies. It is most often encountered in the diet as sucrose (glucose and fructose) or high-fructose corn syrup (55% fructose). At high levels, dietary exposure to fructose triggers a series of metabolic changes originating in the liver, le...

متن کامل

An Epinephrine-sensitive Lipolytic Activity in Adipose Tissue* 7

Adipose tissue has two principal functions: to store excess nutrients as fat, and to release fatty acids on demand. These processes are controlled by the concentration of nutrients in the circulation, by the secretion of various hormones, and by nervous stimuli (2). The purpose of the work to be described was to investigate the mechanism which controls the release of fatty acids from adipose ti...

متن کامل

Highlights From the Latest in Diabetes Research

Circulating fatty acids (FAs) have an unclear relationship to insulin sensitivity. During fasting and exercise, FAs from white adipose tissue (WAT) lipolysis are delivered to peripheral tissue to meet energy needs. In obesity, excess circulating FAs are thought to drive the development of insulin resistance. Girousse et al., through a variety of in vivo and in vitro human and mouse studies, pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 52 9  شماره 

صفحات  -

تاریخ انتشار 2011